STEREOSPECIFIC [2, 3] -SIGMATROPIC REARRANGEMENTS OF CYCLIC N-ARYL SULFIMIDES

Peter K. Claus^{*}, Werner Rieder and Friedrich W. Vierhapper Organisch-Chemisches Institut der Universität Wien A-1090 Wien, Austria

(Received in UK 18 February 1976; accepted for publication 7 March 1976)

The rearrangement of N-aryl sulfimides to o-alkyl-thioalkyl anilines has been suggested to proceed as a [2,3]-signatropic rearrangement of intermediate azasulfonium ylids^{1,2}. Though processes of this type are of widespread occurence³, only few investigations concerning their stereochemistry have been reported, indicating high stereospecifity in rearrangements of allyl sulfonium ylids⁴, allyl sulfoxide-sulfenate⁵ and Wittig rearrangements⁶. We now wish to present stereochemical evidence for the concertedness of rearrangements of N-aryl sulfimides.

Substrates used in this investigation⁷ were 4-methyl-thiane-l-(N-aryl) imides 1 and 2 and <u>cis</u>-4,6-dimethyl-1,3-dithiane-l-(N-aryl) imides 3 and 4. 1 was obtained in 80% yield by reaction of 4-methyl-thiane with N-chlorosuccinimide (NCS) and 4-chloroaniline by a procedure recently reported⁸. No <u>cis</u>-isomer 2 could be detected in the reaction mixture. 2 could be prepared in 11% yield together with 8% 1 by reaction of <u>trans</u>-4-methyl-thiane-l-oxide⁹ with P₂O₅ and 4-chloroaniline (applying a modified procedure reported earlier¹⁰ for synthesis of S,S-dimethyl sulfimides), isolation and purification of 1 and 2 via their picrates² and separation of the recovered sulfimides by column chromatography (Al₂O₃, CHCl₃). Reaction of <u>cis</u>-4,6-dimethyl-1,3-dithiane¹¹ with NCS and 4-chloroaniline gave a mixture of 3 and 4 in a ratio of ~10 : 1 (total yield 70%), which could be separated with difficulty by fractional crystallization from ethyl ether to give the pure isomers.

Configurational assignments were made by ¹³C-NMR and ¹H-NMR spectroscopy (Table I). In the ¹³C-NMR spectra of 2 (which exists with predominantly axial sulfimide functionality¹²) and $\frac{1}{2}$, C-atoms 2, 6 and 5 (and 3 in case of 2) resonate at considerably higher field as compared with the corresponding <u>trans</u>-compounds 1 and 3, because of the smaller B-effect ($B_{a} \leq B_{e}$) and the γ -gauche effect of the axial nitrogen^{12,14}. Confirmation comes from the ¹H-NMR spectra : ΔS_{ae} (H-2) is smaller for 2 and $\frac{4}{2}$, and the axial proton(s) at C-5 (and C-3) in 2 and $\frac{4}{2}$ are 0.4 to 0.7 ppm downfield compared to 1 and 3, as expected from data reported on corresponding sulfoxides¹⁶.

Pure sulfimides 1 - 4 could be rearranged in the manner indicated in Scheme I, to yield rearranged products containing less than 5% of the configurational isomers accor-

ding to ¹H- and ¹³C-NMR spectra. $1 - \frac{1}{2}$ differed greatly in respect of ease of their rearrangement : 1 and 2 were heated in triethanolamine for 1 hour at 120 - 140°; 3 in benzene-triethylamine (1:1) for 10 hours at 80°. In contrast, the <u>cis</u>-isomer $\frac{1}{2}$ rearranged rapidly at very mild conditions even in absence of base (f.i. on short heating in ether, or on attempted column chromatography on Al₂O₃).

Scheme I

Rearranged products were isolated and purified by column chromatography (silicagel, CHCl₃). Other products obtained were 4-chloroaniline (scission of S-N bond) and some products unidentified, presumably formed by S-C bond scission. Yields of rearranged products were 40 to 60%.

Configurational assignments for products 5 - 8 are based on NMR data (Table I). 6 and 8 are conformationally homogeneous, with equatorial aryl substituent; 5 exists, at room temperature, predominantly in the conformation with equatorial aryl and axial methyl group; in contrast, the aryl group in 7 is entirely in the axial position¹³. This is borne out by the shieldings of the ring carbon atoms α , B and γ to the axial substitu ents in 5 and 7 compared to 6 and 8, by the shift difference of axial and equatorial CH₃-groups in 5 and 6 and by the close similarity of the shift values of 7 and 8 to the reported spectra¹⁷ of the 2-phenyl-4,6-<u>cis</u>-dimethyl-1,3-dithianes. The aromatic o-protons of rearranged products with axial aryl group (7)⁷ are persistently shifted downfield by 0.2 to 0.3 ppm compared with the shifts of H-6' of equatorially oriented aryl groups. Further confirmation comes from the chemical shifts and coupling constants of the protons included in Table I.

Table I. Pertinent ¹H- and ¹³C-NMR Shift Data^a of Cyclic Sulfimides $1 - \frac{1}{2}$ and Rearranged Products $5 - \frac{8}{2}$

Compound ^b	1 _H			13 ₀					
	H-2, H-2,	۵ ^δ ae ^C H−3	,5 _a H-3,5 _e	C-2	C-3	C-4	C-5	C- 6	CH3
1 (149-153)	3.16 2.68	+0.48 1.5	<u>d</u> 2.01	48.05	31.90	30.92	31.90	48.05	21.44
2 (77-79)	2.87 2.66	+0.21 2.1	8 1.68	42.09	25.22	29.90	25.22	42.09	21.29
3 (103-109)	3.87 3.83 ⁶	+0.04 2.0	3 2.39	48.40		38.46	45.93	58.47	20.21 <u>f</u> 17.49 ^g
4 (99-102)	3.72 3.90 ^h	-0.18 2.4	4 1.61	47.55		38.11	32.75	51.23	21,27 ^f 18,15 ^g
	H-2 ¹	H-6·1	сн _з і						
5 (not cr.)	4.05(d,10 of d,3)	7.17(d,3)	1.03(d,7)	35.38	37.27	27.47	32.25	24.58	17.64
6 (not cr.)	3.83(d,11 of d,3)	7.13(d,3)	0.99(a,6)	42.62	40.62	33.53	35.37	30.50	23.14
2 (106-107)	4.98(s)	7.54(a,3)	1.23 ₅ (d,7)	42.87		35.56	43.20	35.56	21.83
8 (11 3- 115)	5.22(в)	7.32(a,3)	1.29(d,7)	49.47		41.08	43.37	41.08	21.46

^a In ppm; solvent CDCl₃ + 5% Me₄Si. Spectra were recorded on a Varian XL-100, 100 MHz ¹Hspectra in the CW mode; the ¹³C-spectra in the FT-mode at 25.16 MHz. Only relevant data are included. ^b In parentheses : mp, ^oC. All new compounds gave satisfactory elemental analysis. For numbering of atoms see Scheme I. ^c $\delta_{H-2e} - \delta_{H-2a}$; the negative sign in case of 4 was proven by recording the spectrum of $\frac{4}{2}-2-\frac{1}{4}e$, prepared from r-2-deuterio-<u>cis</u>-4, <u>cis-6-1,3-dithiane^{11a}. ^d</u> Superimposed multipletts. ^e In 3-2-<u>d</u>e: 3.82; H-2e=D. ^f CH₃-4. ^g CH₃-6. ^h In $\frac{4}{4}-2-\frac{1}{4}e$: 3.90; H-2e=D. ⁱ In parentheses : multiplicity, and coupling con stants in Hz.

In summary, rearrangement of cyclic N-aryl sulfimides could be shown to proceed with a stereospecifity of \geq 95% suprafacially with respect to the sulfoniumylid fragment, regardless of relative acidities of α -hydrogens and stabilities of rearranged products, thus confirming the assumption of a concerted mechanism. Similar stereospecifity, observed in rearrangement of conformationally rigid systems as <u>trans</u>-l-thiadecalin-l-(N-aryl) imides⁷ will be reported in a full paper. <u>Acknowledgement</u> : The authors thank Prof. K. Kratzl , University of Vienna, for sti mulating interest and support. Financial support by the Fonds zur Förderung der wissenschaftlichen Forschung and by the Hochschuljubiläumsstiftung der Stadt Wien is gratefully acknowledged.

References and Footnotes

- 1. P. Claus and W. Vycudilik, Tetrahedron Lett., 3607 (1968).
- 2. P. Claus and W. Rieder, Mh.Chem. 103, 1163 (1972).
- Ng. Trong Anh, "Die Woodward-Hoffmann-Regeln und ihre Anwendung", Verlag Chemie, Weinheim 1972, p. 96 - 98.
- 4. B.M. Trost and R.F. Hammen, <u>J.Am.Chem.Soc</u>. 95, 962 (1973).
- D.N. Jones, J. Blenkinsopp, A.C.F. Edmonds, E. Helmy and R.J.K. Taylor, J.C.S.Perkin I, 2602 (1973).
- 6. J.E. Baldwin and J.E. Patrick, <u>J.Am.Chem.Soc</u>. 93, 3556 (1971)
- 7. Observations are valid for a series of other conformationally homogeneous sulfimides and rearranged products which have been investigated; paper in preparation.
- 8. P.K. Claus, W. Rieder, P. Hofbauer and E.Vilsmaier, Tetrahedron 31, 505 (1975).
- 9. C.R. Johnson and D. McCants, <u>J.Am.Chem.Soc</u>. 87, 1109 (1965).
- 10. P. Claus and W. Vycudilik, Mh.Chem. 101, 396 (1970).
- (a) E.L.Eliel, A.A. Hartmann and A.G. Abatjoglou, <u>J.Am.Chem.Soc</u>. <u>96</u>, 1807 (1974);
 (b) E.L. Eliel, V.S. Rao, S. Smith and R.O. Hutchins, <u>J.Org.Chem</u>. <u>40</u>, 524 (1975).
- P.K. Claus, W. Rieder, F.W. Vierhapper and R.L. Willer, <u>Tetrahedron Lett.</u>, 119 (1976).
- Compounds <u>3</u>, <u>4</u>, <u>7</u> and <u>8</u> are conformationally homogeneous because of severe <u>syn</u>axial methyl-methyl interactions upon ring inversion.
- 14. Cf. G.W. Buchanan and T. Durst, <u>Tetrahedron Lett.</u>, 1683 (1975).
- 15. This criterium has been found to hold for cyclic sulfoxides, N-unsubstituted sulfimides and N-arylsulfonyl sulfimides : J.B. Lambert, C.E. Mixan and D.S. Bailey, <u>J.Am.Chem.Soc</u>. 94, 208 (1972).
- Cf. M.J. Cook and A.P. Tonge, <u>J.C.S.Perkin II</u>, 767 (1974), and the literature cited there.
- 17. E.L. Eliel, V.S. Rao and F.G. Ridell, J.Am.Chem.Soc., in press.